https://www.halvorsen.blog

Level Tank System

Hans-Petter Halvorsen

Level Tank

Aim: Control the Level in the Tank (*h*)

Level Tank

$$A_t \frac{dh}{dt} = F_{in} - F_{out}$$

$$\dot{h} = \frac{1}{A_t} (K_p u - F_{out})$$

Where:

- F_{in} flow into the tank , $F_{in} = K_p u$
- F_{out} flow out of the tank
- *A_t* is the cross-sectional area of the tank

Model Values

- h[cm] is the level in the water tank. $0cm \le h \le 20cm$
- u[V] is the pump control signal to the pump. $0V \le u \le 5V$
- A [cm2] is the cross-sectional area in the tank
- $K_p [(cm3/s)/V]$ is the pump gain. The flow into the tank is $F_{in} = K_p u$, i.e. we control the flow into the tank using a pump.
- F_{out} [cm3/s] is the outflow through the value. The outflow may be manually adjusted with a handle.

Model Values

$$\dot{h} = \frac{1}{A_t} \left[K_p u - F_{out} \right]$$

You can assume the following values in your simulations:

 $A_t = 78.5 \ cm$ $K_p = 16.5 \ cm^3/s$

 F_{out} should be adjustable from your Front Panel The range for F_{out} could, e.g., be $0 \le F_{out} \le 40 cm^3/s$

Level Tank model – Integrator Model

#1

$$\dot{h} = \frac{1}{A_t} \left[K_p u - F_{out} \right]$$

- $K_p [cm^3/s)/V$] is the pump gain
- $F_{out}[cm^3/s]$ is is the outflow through the valve
- $A_t [cm^2]$ is the cross-sectional area of the tank
- *u* [*V*] is the control signal to the pump

Level Tank model - 1.order linear system

A more accurate model may, e.g., be:

$$\dot{h} = \frac{1}{A_t} \left[K_p u - K_v h \right]$$

where K_{ν} is the valve gain on the outflow.

It is more normal to put it like this:

$$\dot{h} = -\frac{K_v}{A_t}h + \frac{K_p}{A_t}u$$
 (The general term is $\dot{x} = ax + bu$)

The model above is a so-called Time-constant system (1.order linear system).

You may find K_p and K_v using, e.g., the Least Square method based on logged data from the real system

Level Tank model - 1.order Nonlinear Model

The following model is even more accurate:

$$\dot{h} = \frac{1}{A_t} \left[K_p(u - u_0) - K_v \sqrt{\rho g h} \right]$$

This is a so-called 1.order nonlinear model

- *h* [*cm*] is the level
- *u* [*V*] is the pump control signal to the pump
- u_0 is the bias voltage needed to get any flow (with u less than u_0 there is no flow into the tank)
- $A_t[cm^2]$ is the cross-sectional area of the tank
- $K_p[(cm3/s)/V]$ is the pump gain
- K_v is the valve constant. It depends on the opening of the valve, but if the opening is constant, K_v is constant
- ρ is the is the density of the liquid (water: $1 kg/m^3$)
- g is the is the gravity constant, 9.81 m/s²

You may find K_p and K_v using, e.g., the Least Square method based on logged data from the real system https://www.halvorsen.blog

Level Tank in LabVIEW

Hans-Petter Halvorsen

Level Tank in LabVIEW

You can implement the Level Tank in LabVIEW in different ways:

- The model can be implemented using the blocks (Integrator, Summation, Multiplication, etc.) from the Simulation palette in LabVIEW (LabVIEW Control Design and Simulation Module)
- Create a Discrete version of the differential equation (use e.g., Euler Forward). Then use the Formula Node, MathScript Node or MATLAB Node inside LabVIEW

You should test both these alternatives

LabVIEW Simulation Palette

Block Diagram of Level Tank

$$\dot{h} = \frac{1}{A_t} \left[K_p u - F_{out} \right]$$

Here you see a "Pen and Paper" version of the block diagram for the Level Tank

This block diagram can easily be implemented in LabVIEW using the LabVIEW Control Design and Simulation Module

Level Tank Model in LabVIEW

LabVIEW Control Design and Simulation Module

Note! This model is implemented in a so-called "Simulation Subsystem" (which is recommended!!!)

https://www.halvorsen.blog

Discretization

Hans-Petter Halvorsen

Continuous vs. Discrete Systems - Example

In this Example we have used Sampling Interval $T_s = 0.1s$

Discretization

Continuous Model:

$$\dot{h} = \frac{1}{A_t} \left[K_p u - F_{out} \right]$$

We can use e.g., the Euler Approximation in order to find the discrete Model:

$$\dot{x} \approx \frac{x(k+1) - x(k)}{T_s}$$
 T_s - Sampling Time $x(k)$ - Present value $x(k+1)$ - Next (future) value

The discrete Model will then be on the form:

$$x(k+1) = x(k) + \dots$$

We can then implement the discrete model in any programming language

https://www.halvorsen.blog

Control System in LabVIEW

Hans-Petter Halvorsen

Built-in PID in LabVIEW

Example of Control System in LabVIEW

The PID Algorithm
$$u(t) = K_p e + \frac{K_p}{T_i} \int_0^t e d\tau + K_p T_d \dot{e}$$

Where u is the controller output and e is the control error:

$$e(t) = r(t) - y(t)$$

r is the Reference Signal or Set-pointy is the Process value, i.e., the Measured value

Tuning Parameters:

- K_p Proportional Gain
- T_i Integral Time [sec.]
- T_d Derivative Time [sec.]

PID Parameters

You may use the following Parameters as a starting point:

$$K_p = 3$$
$$T_i = 15 s$$
$$T_d = 0$$

Then you can "fine-tune" them by using "Trial and Error", i.e., run the simulations with different values for the parameters and observe if the results are good or not

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

